
Generating All Minimal Petri Net Unsolvable
Binary Words

Evgeny Erofeev1?, Kamila Barylska2∗∗,  Lukasz Mikulski2??, Marcin
Pia↪tkowski2∗∗

1 Parallel Systems, Department of Computing Science
Carl von Ossietzky Universität, D-26111 Oldenburg, Germany

evgeny.erofeev@informatik.uni-oldenburg.de
2 Faculty of Mathematics and Computer Science

Nicolaus Copernicus University, 87-100 Toruń, Poland
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Abstract. Sets of finite words, as well as some infinite ones, can be
described using finite systems, e.g. automata. On the other hand, some
automata may be constructed with use of even more compact systems,
like Petri nets. We call such automata Petri net solvable. In this paper we
consider the solvability of singleton languages over a binary alphabet (i.e.
binary words). An unsolvable (i.e. not solvable) word w is called minimal
if each proper factor of w is solvable. We present a complete language-
theory characterisation of the set of all minimal unsolvable binary words.
The characterisation utilises morphic-based transformations which expose
the combinatorial structure of those words, and allows to introduce a
pattern matching condition for unsolvability.
Keywords: Binary words, labelled transition systems, Petri nets, syn-
thesis

1 Introduction

To deal with infinite sets of words we need to specify them in a finite way. Finite
automata which are known as a classical model for describing regular languages,
are equivalent to finite labelled transition systems [8]. Some sets may be expressed
with use of even more compact system models.

In this paper we investigate the synthesis problem with a specifications given in the
form of labelled transition systems. The sought system model is a place/transition
Petri net [11], with its reachability graph as a natural bridge between specifica-
tion and implementation. Namely, we are concerned with finding a net, which
reachability graph is isomorphic to a given labelled transition system.
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To address this issue one may use the theory of regions [3]. For a given labelled
transition system, the solution of a number of linear inequations systems provided
by the theory of regions exists if and only if there exists an implementation in
a net form. Moreover, solutions of such linear inequations systems are usually
utilised during the synthesis of the resulting system (see Synet [4] and APT [12]).

Our aim is to initiate a combinatorial approach and to provide a complete
characterisation of a generative nature for a special kind of labelled transition
systems – non-branching and acyclic transition systems having at most two labels
(i.e. binary words) [1]. More precisely, we characterise all minimal unsolvable
binary words.

The paper is organized as follows. First we give some basic notions and notations
concerning labelled transition systems, Petri nets and theory of regions. After
that we present a necessary condition for minimal unsolvability, which allows to
formulate possible shapes of minimal unsolvable words in the form of extended
regular expressions [5]. In section 4 we introduce the notion of (base) extendable
and non-extendable binary words. In the following sections we provide the main
results of this paper: a generic characterisation of all minimal unsolvable binary
words and its utilization for an efficient verifying procedure. We conclude the
paper with a short section containing some directions for further research.

2 Basic notions

In this section we introduce notions used throughout the paper.

Words
A word over alphabet T is a finite sequence w ∈ T ∗, and it is binary if |T | = 2. For
a word w and a letter t, #t(w) denotes the number of times t occurs in w. A word
w′ ∈ T ∗ is called a subword (or factor) of w ∈ T ∗ if ∃u1, u2 ∈ T ∗ : w = u1w

′u2.
In particular, w′ is called a prefix of w if u1 = ε, a suffix of w if u2 = ε, and an
infix of w if u1 6= ε and u2 6= ε.

A mapping φ : Σ∗1 → Σ∗2 is called a morphism if we have φ(u · v) = φ(u) ·φ(v) for
every u, v ∈ Σ∗1 whenever all operations are defined. A morphism φ is uniquely
determined by its values on the alphabet. Moreover, φ maps the neutral element
of Σ∗1 into the neutral element of Σ∗2 .

Transition systems
A finite labelled transition system (or simply lts) with initial state is a tuple
TS = (S,→, T, s0) with nodes S (a finite set of states), edge labels T (a finite
set of letters), edges →⊆ (S × T × S), and an initial state s0 ∈ S. A label
t is enabled at s ∈ S, denoted by s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→. A state s′ is
reachable from s through the execution of σ ∈ T ∗, denoted by s[σ〉s′, if there
is a directed path from s to s′ which edges are labelled consecutively by σ.
The set of states reachable from s is denoted by [s〉. A sequence σ ∈ T ∗ is
allowed, or firable, from a state s, denoted by s[σ〉, if there is some state s′
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such that s[σ〉s′.1 Two labelled transition systems TS1 = (S1,→1, T, s01) and
TS2 = (S2,→2, T, s02) are isomorphic if there is a bijection ζ : S1 → S2 with
ζ(s01) = s02 and (s, t, s′) ∈→1⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.

A word w = t1t2 . . . tn of length n ∈ N uniquely corresponds to a finite transition
system TS(w) = ({0, . . . , n}, {(i− 1, ti, i) | 0 < i ≤ n ∧ ti ∈ T}, T, 0).

Petri nets
An initially marked Petri net is denoted as N = (P, T, F,M0) where P is a finite
set of places, T is a finite set of transitions, F is the flow function F : ((P × T )∪
(T × P ))→ N specifying the arc weights, and M0 is the initial marking (where
a marking is a mapping M : P → N, indicating the number of tokens in each
place). A side-place is a place p with p•∩•p 6= ∅, where p• = {t ∈ T | F (p, t)>0}
and •p = {t ∈ T | F (t, p)>0}. N is pure or side-place free if it has no side-
places. A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if
∀p ∈ P : M(p) ≥ F (p, t). The firing of t at marking M leads to M ′, denoted by
M [t〉M ′, if M [t〉 and M ′(p) = M(p) − F (p, t) + F (t, p). This can be extended,
as usual, to M [σ〉M ′ for sequences σ ∈ T ∗, and [M〉 denotes the set of markings
reachable from M . The reachability graph RG(N) of a bounded (such that the
number of tokens in each place does not exceed a certain finite number) Petri net
N is the labelled transition system with the set of vertices [M0〉, initial state M0,
label set T , and set of edges {(M, t,M ′) |M,M ′ ∈ [M0〉 ∧M [t〉M ′}. If a labelled
transition system TS is isomorphic to the reachability graph of a Petri net N ,
we say that N PN-solves (or simply solves) TS, and that TS is synthesisable to
N . We say that N solves a word w if it solves TS(w). A word w is then called
solvable, otherwise it is called unsolvable.

Solvability
Region theory constitutes the most common tool for proving solvability of labelled
transition systems. Let (S,→, T, s0) be an lts and N = (P, T, F,M0) be a Petri
net, which we hope to synthesise. The synthesis comprises solving systems of
linear inequalities in integer numbers. Those inequalities guaranty satisfiability
of the following properties:

State separation property (ssp in short)
For every pair s, s′ ∈ S of distinct states (s 6= s′) there exists a place p ∈ P
such that M(p) 6= M ′(p) for markings M and M ′ corresponding to s and s′.

Event/state separation property (essp in short)
For every state-transition pair s ∈ S and t ∈ T with ¬(s[t〉) there exists
a place p ∈ P such that M(p) < F (p, t) for the marking M corresponding to
state s.

Note that if the lts is defined by a word w then the state separation property is
easy to satisfy by introducing a counter place. On the other hand, satisfiability
of event/state separation property, for every state-transition pair s ∈ S and
t ∈ T with ¬(s[t〉), requires a place preventing t at s. In the case of binary word
w ∈ {a, b}∗ such a place p ∈ P is of the form depicted in figure 1.

1 For compactness, in case of long formulas we write |r α |s β |t instead of r [α〉 s [β〉 t.
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Fig. 1. A general form of a place p containing initially m tokens and preventing
a transition (a or b) to satisfy essp.
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Fig. 2. N1 solves TS1. No solution of TS2 exists.

The labelled transition systems TS1 and TS2 depicted in figure 2 correspond
to the words aabba and abbaa, respectively. The former is PN-solvable, since
the reachability graph of N1 is isomorphic to TS1, while the latter contains
an unsolvable event/state separation problem (see [1] for detailed explanation).
Note that word abbaa, isomorphic to TS2, is the shortest binary word (modulo
swapping a/b) which is not PN-solvable. However, its reverse (aabba) is solvable.

Minimal unsolvable words
If w is PN-solvable, then all of its subwords w′ are. To see this, let the Petri
net solving w be executed up to the state before w′, take this as the new initial
marking, and add a pre-place with #a(w

′) tokens to a and a pre-place with
#b(w

′) tokens to b. Thus, the unsolvability of any proper subword of w entails
the unsolvability of w. For this reason, the notion of a minimal unsolvable word
(muw in short) is well-defined, namely, as an unsolvable word all of which proper
subwords are solvable. A complete list of minimal unsolvable words up to length
110 can be found, amongst some other lists, in [10].

3 Structurel classification of minimal unsolvable words

Throughout this section we investigate possible shapes of minimal unsolvable
words in details. In [1,2] some necessary and some sufficient properties of solvable
and of unsolvable words have already been described. In this section we shall
provide known facts about minimal unsolvable words, which are true modulo
swapping a and b, only in one form for the sake of succinctness. From these
facts we then deduce some important restrictions for the possible shapes of those
words.
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Proposition 1. [1] Sufficient condition for unsolvability

If a word over {a, b} has a subword of the form (1), then it is not PN-solvable.

( a b α ) b∗ ( b a α )+ a , with α ∈ T ∗ (1)

Remark: Let us notice that for a fixed α the language described by the expression
(abα)b∗(baα)+a is regular. However in our case α is an arbitrary but fixed binary
word and we consider all words of the form (1) for all possible α’s. The language
obtained this way is obviously not regular (nor even context-free).

In the following, u, v ∈ {a, b}∗. For a decomposition w = u|sav, let us call b
separable at s iff we can construct a Petri net with transitions a and b and one
place p such that w can be fired completely and at s, b is not enabled. In the
present paper, we rely on the main result proved in a companion paper [2], which
will here be used in the following form:

Lemma 1. [2] Characterisation of separable states

For a word w ∈ {a, b}∗ let w = u|sav be an arbitrary decomposition. Then, b is
separable at s iff ∀α,β,γ,δ (w = αbβ|saγbδ ⇒ #b(bβ)·#a(aγ) > #a(bβ)·#b(aγ)).

Besides these general structural restrictions, there are known conditions for
(un)solvability, which allow to restrict possible shapes of minimal unsolvable
words being applied step by step.

Proposition 2. [1] Solvability of av and vb implies solvability of avb

If both av and vb are solvable, then avb is also solvable.

This implies that each minimal unsolvable word either starts and ends with a
or starts and ends with b. Also, if a muw w starts (and ends) with a then b is
always separated in w.

Lemma 2. b is always separated in muw aα

If w is muw and starts with a, there is no violations of essp for b in w.

From the following fact we get that minimal unsolvable word either starts with
ab or with ba.

Proposition 3. [1] Solvable word can be prefixed by starting letter

If a word av is PN-solvable then aav is, too.

Let w be a minimal unsolvable binary word. We now have two possible cases:
either w ends with a single a (or b), or it has many (more than one) a’s (b’s,

respectively) at the end. So far we know w = abua (or w = baub). Due to the

following statement, we get bu (or au, respectively) either has no aa or no bb.
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Proposition 4. [1] No aa and bb inside a minimal unsolvable word

If a minimal non-PN-solvable word is of the form w = aαa, then either α does
not contain the factor aa or α does not contain the factor bb.

Assume, bu has neither factors aa nor bb inside. The following two cases for a

muw w are possible: ab(ab)kaa or ab(ab)ka, where k ≥ 0

Petri nets N1 and N2 in figure 3 solve the first and the second of these forms,
respectively. From proposition 4 and this observation we deduce that, in minimal
unsolvable word w = aαa, α has either the factor aa or the factor bb, but never
both.

a b

q

p1

p2

k + 1 k + 2

N1

m

p1p2
q

 =

k + 1
0

k + 1

 ; a b

p1

p2

q N2

m

p1p2
q

 =

 0
k + 1

1



Fig. 3. N1 solves ab(ab)kaa. N2 solves ab(ab)ka.

Thus, w has one of the following forms (modulo a/b), where xi > 0 for 1 ≤ i ≤ n:

1. abx1abx2a . . . abxna : starts and ends with a, single a at the end, no aa;
2. abax1bax2b . . . baxnba : starts and ends with a, single a at the end, no bb;
3. abx1abx2a . . . abxnaa : starts and ends with a, many a at the end, no aa inside;
4. abax1bax2b . . . baxna : starts and ends with a, many a at the end, no bb.

All those patterns can be comprised into the following three general forms of
muw w (modulo swapping a/b and with bb appearing inside):

abx1abx2a . . . abxna with xi > 0 for 1 ≤ i ≤ n, for 1; (2)

babx2abx3a . . . abxn with xi > 0 for 2 ≤ i ≤ n, for swapped 2, 4; (3)

abx1abx2a . . . abxnaa with xi > 0 for 1 ≤ i ≤ n, for 3. (4)

In the rest of this section we will try to figure out these forms more precisely.

Consider first the form (4): w = abx1abx2a . . . abxnaa with xi > 0 for 1 ≤ i ≤ n.
Since w necessarily has bb as a factor, xi ≥ 2 for some 1 ≤ i ≤ n. If n = 1 then
x1 ≥ 2. We shall prove now that if n > 1 then x1 = 2, x2 = . . . = xn = 1.
Let j = max{1 ≤ i ≤ n | xi ≥ 2}. For the subword v = abxj−1︸ ︷︷ ︸

α

| ba . . . aba︸ ︷︷ ︸
β

a

of w, where xj ≥ 2 and xj+1 = . . . = xn = 1, we have #a(β) · #b(α) =
(n− j + 1) · (xj − 1) ≥ 1 · (n− j + 1) = #a(α) ·#b(β), implying v is not solvable,
due to lemma 1. If j > 1, v is a proper subword of w, which contradicts minimal
unsolvability of w. Hence, xi ≤ 1 for i > 1. Thus, there are two possibilities for
w of the form (4):

abxaa, with x > 2 or abb(ab)kaa, with k ≥ 0 (4’)

To understand shapes (2) and (3), the following balancing property will be useful.

6



Lemma 3. [2] Block lengths differ by at most 1

Let w ∈ a∗b+(ab+)∗(a|ε) be a word that contains both babxa and abbxb with x ≥ 1
as subwords. Then, w is not solvable.

Let us now study pattern (2). It is easy to see that words corresponding to pattern
(2) are solvable for n = 1. Consider the partial instance, n = 2, of this pattern. The

words of the following two classes abx+1abxa or abx−kabxa with 0 ≤ k < x,

are solvable, and Petri nets N1 and N2 in figure 4 are possible solutions for words
of the first and of the second of these forms, respectively. Thus, if w = abx1abx2a
is minimal unsolvable, then x1 − x2 ≥ 2.

a b

q

p1

p2 p3

2x+ 1 2

x

N1

m


p1
p2
p3
q

 =


0
1

2x+ 1
2x+ 1



a b

q

p2

p1

x

k

k + 1
x

N2

m

p1p2
q

 =

2x− k
0

x+ k


Fig. 4. N1 solves abx+1abxa. N2 solves abx−kabxa.

Lemma 4. [1] Side-place-free solvability with few initial b’s

If u = bx1abx2a . . . abxna is solvable and x1 ≤ min{x2, . . . , xn}, then u is solvable
side-place-freely.

Lemma 5. [1] Solving au from u

Suppose u = bx1abx2a . . . abxna is solvable side-place-freely. Then au is solvable.

Consider an arbitrary minimal unsolvable word w = abx1abx2a . . . abxna of the
form (2) with n ≥ 3, xi > 0 for 1 ≤ i ≤ n. Let x = min{xi | 2 ≤ i ≤ n}. Due
to lemma 3, xi ∈ {x, x + 1} for 2 ≤ i ≤ n, and then x1 ≤ x + 2. If x1 < x + 1,
by lemmata 4 and 5, the word w is solvable, contradicting the choice. Hence,
x + 1 ≤ x1 ≤ x + 2, and min{xi | 1 ≤ i ≤ n} = x. We now show xn = x. Two
cases are possible:
Case 1: x1 = x + 2. If xn = x + 1, then xj = x for some 1 < j < n, which
by lemma 3 contradicts the minimality of w. Hence, xn = x, and w follows the
pattern abx+2a(bx+1a)+bxa.
Case 2: x1 = x + 1. By contraposition, assume xn = x + 1. Then, xj = x for
some 2 ≤ j ≤ n− 1. Let j1 = max{j | xj = x}. Assume a is not separated from
some state sk in w (b is separated by lemma 2). If k < j1, then, by lemma 1, for

w = a bx1 a . . . a bxk−1︸ ︷︷ ︸
α

|sk

β′︷ ︸︸ ︷
b a . . . bxj1 a . . . bxn︸ ︷︷ ︸

β

a
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we have

#a(β) ·#b(α) ≥ #a(α) ·#b(β) ⇐⇒ #b(α)

#a(α)
≥ #b(β)

#a(β)
,

where #a(α) 6= 0 by the form of w, and #a(β) 6= 0 due to j1 ≤ n− 1. From the

choice of j1, #b(β)
/

#a(β) ≥ #b(β
′)
/

#a(β′), implying

#b(α)

#a(α)
≥ #b(β)

#a(β)
≥ #b(β

′)

#a(β′)
=⇒ #a(β′) ·#b(α) ≥ #a(α) ·#b(β

′).

According to lemma 1, this means unsolvability of the proper subword αβ′a of
w, which contradicts minimality of w. Assume now k ≥ j1. Then in

w = a bx1 a . . . a bxj1 a . . . bxk−1︸ ︷︷ ︸
α

|sk b a . . . bxn︸ ︷︷ ︸
β

a,

by lemma 1, we have

#a(β) ·#b(α) ≥ #a(α) ·#b(β) ⇐⇒ #b(α)

#a(α)
≥ #b(β)

#a(β)
,

where #a(α) 6= 0 by the form of w, and #a(β) 6= 0 because a can be separated
“inside” the last group of b’s with a place p having #b(w) ·n tokens on it initially,
the weight of the arc from p to a is #b(w), and the weight of the arc from b to p

is 1. On the other hand, thanks to the choice of xj1 , we have x+1 > #b(α)
/

#a(α)

and #b(β)
/

#a(β) > x+ 1, which is a contradiction. Hence, xn = x.

From the consideration above we can deduce that all minimal unsolvable words
of the form (2) match one of the following three refined patterns

abx+kabxa, with x > 0, k > 2 or

abx+2(abx+1)∗abxa, with x > 0 or

abx1abx2a . . . abxna, with x1 = x+ 1, xn = x, xi ∈ {x, x+ 1} for x > 0, n ≥ 3

(2’)

The last pattern to be studied in details is (3). Binary words of the form (3)
are obviously solvable for n = 2. We now consider arbitrary minimal unsolvable
word w = babx2abx3a . . . abxn with n ≥ 3 and xi > 0 for 2 ≤ i ≤ n of the form
(3). Let x = min{xi | 2 ≤ i ≤ n − 1}. Due to lemma 3, xi ∈ {x, x + 1} for all
2 ≤ i ≤ n− 1, and then xn ≤ x+ 2. Assume xn ≤ x. Consider state s in w

w = b a bx2 a . . . a bxk︸ ︷︷ ︸
α

|s

β′︷ ︸︸ ︷
a . . . bxn−1−1 b a bxn−1︸ ︷︷ ︸

β

b,

from which b is not separated (a is always separated by lemma 2). b can be
separated from the state right after the first b with a place p having an arc from
a to p with weight max{xi | 2 ≤ i ≤ n}, an arc from p to b with weight 1, and
initially 1 token on it. Hence, k 6= 1. Transition b can easily be separated at the
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very end of w by an input place p of b, having #b(w) tokens on p initially. Hence,
k 6= n. If k = n− 1, we have

#a(α) ·#b(β) = (n− 2) · (xn− 1) < 1 · (1 +x2 + . . .+xn−1) = #a(β) ·#b(α),

which, due to the minimal unsolvability of w, contradicts lemma 1. Hence,
k < n− 1. From lemma 1, because of minimal unsolvability of w, we have

#a(α) ·#b(β) ≥ #a(β) ·#b(α) ⇐⇒ #b(β)

#a(β)
≥ #b(α)

#a(α)
,

where #a(β) 6= 0 because of k < n− 1, and #a(α) 6= 0 due to k > 1. Since we
assumed xn ≤ x,

#b(β
′)

#a(β′)
≥ #b(β)

#a(β)
⇐⇒ #a(α) ·#b(β

′) ≥ #a(β′) ·#b(α).

Due to lemma 1, αβ′b is not solvable. Since it is a proper subword of w, we
get a contradiction to the minimality of w. Thus x+ 1 ≤ xn ≤ x+ 2. We now
demonstrate x2 = x. Consider two possible cases:
Case 1: xn = x+ 2. Take j = max{i | xi = x}. Then for the subword u

u = b a bxj (a bx+1)k︸ ︷︷ ︸
α

|s a bxn−1︸ ︷︷ ︸
β

b.

of w with k ≥ 0, the following inequality is satisfied

#b(β) ·#a(α) = (x+ 1) · (k + 1) ≥ (1 + x+ (x+ 1) · k) · 1 = #b(α) ·#a(β).

This means u is unsolvable. If j > 2, u is a proper subword of w, contradicting
minimality of w. Hence, in this case x2 = x, xi = x+ 1 for 2 < i < n.
Case 2: xn = x+ 1. Let j1 = min{i | xi = x}. By the definition of x, j1 6= n. By
contraposition, assume x2 = x+ 1. Consider state sk in w after the group of bxk ,
such that b is not separated at sk (a is always separated by lemma 2). If k > j1,
then, by lemma 1, for

w = b a bx2 a bx3−1

α′︷ ︸︸ ︷
b a . . . bxj1 a . . . bxk︸ ︷︷ ︸
α

|sk a . . . bxn−1︸ ︷︷ ︸
β

b

the following inequality holds

#b(β) ·#a(α) ≥ #a(β) ·#b(α) ⇐⇒ #b(β)

#a(β)
≥ #b(α)

#a(α)
,
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where #a(β) 6= 0 by the choice of sk, #a(α) 6= 0 due to the fact b can be separated

from the state after the first b. As x2 = x+1 and xj1 = x, we have #b(α)
/

#a(α)

≥ #b(α
′)
/

#a(α′). From

#b(β)

#a(β)
≥ #b(α

′)

#a(α′)
=⇒ #b(β) ·#a(α′) ≥ #a(β) ·#b(α

′),

according to lemma 1, it follows that the proper subword α′βb of w is unsolvable,
contradicting minimality of w. Suppose k ≤ j1. Then, by lemma 1, for

w = b a bx2 a . . . bxk︸ ︷︷ ︸
α

|sk a . . . bxj1−1 b a . . . bxn−1︸ ︷︷ ︸
β

b

the following inequality is satisfied

#b(β) ·#a(α) ≥ #a(α) ·#b(β) ⇐⇒ #b(β)

#a(β)
≥ #b(α)

#a(α)
,

with #a(β) 6= 0 thanks to the special form of the word, and #a(α) 6= 0 due to
k < n. On the other hand, due to xn = x+ 1 and by the choice of j1, we have

x + 1 > #b(β)
/

#a(β), and #b(α)
/

#a(α) > x + 1, which is a contradiction.

Thus, x2 = x, and we deduce the following refinement of pattern (3)

babx(abx+1)∗abx+2, with x > 0 or

babx2abx3a . . . abxn , with x2 = x, xn = x+ 1, xi ∈ {x, x+ 1} for x > 0, n ≥ 3

(3’)

Notice that sets of words generated by all patterns (2’)-(4’) are mutually disjoint.
In the following section we divide them into classes of extendable and non-
extendable words.

4 Generative nature of minimal unsolvable binary words

In this section we provide a complete characterisation of minimal unsolvable binary
words. The general idea is to split the whole set into two classes: extendable (which
are origins for more complex minimal unsolvable words) and non-extendable
(which might be also seen as origins of more complex unsolvable, but not minimal,
binary words). In the former class we distinguish the simplest extendable muw’s,
i.e. the words in which the factor α from (1) is of the form ai or bi. Such words are
called base extendable. After introducing the class of base extendable words, we
provide an extension operation based on simple morhisms, which are prefix codes.
The code nature is used in subsequent section, where we define the converse
procedure, called compression.

10



4.1 Base extendable and non-extendable words

The following definitions must be understood modulo swapping a/b.

Definition 1. Base extendable words

A word u ∈ {a, b}∗ is called base extendable if it is of the form

abw(baw)ka with w = bj , j > 0, k ≥ 1, or

baw(abw)kb with w = bj , j ≥ 0, k ≥ 1.
(5)

The class of base extendable words is denoted by BE . 1

Definition 2. Non-extendable words

A word u ∈ {a, b}∗ is called non-extendable if it is of the form

abbjbkbabja with j ≥ 0, k ≥ 1.

The class of all non-extendable words is denoted by NE . 2

We now establish that all words from classes BE and NE are minimal unsolvable.

Lemma 6. Minimal unsolvability of base extendable
and non-extendable words

If w belongs to class BE or NE, then it is unsolvable and minimal with that
property.

Proof: Let us notice that a word w is a muw if and only if w is unsolvable and
every proper prefix and every proper suffix of w is solvable. Every word w from
BE ∪ NE is of the form 1, hence unsolvable. We shall prove the minimality of w
by indicating Petri nets solving its proper prefix and suffix.

CASE 1 (base extendable words):

(a) w = abbj(babj)ka

Consider first an arbitrary (modulo swapping a/b) base extendable word of the
form w = abbj(babj)ka with j ≥ 0 and k ≥ 1. This form satisfies (1) with α = bj ,
the star ∗ being repeated zero times, and the plus + being repeated k times. Due
to proposition 1, all binary words of this form are unsolvable.

The maximal proper prefix abbj(babj)k of this word can be solved by Petri net
N1 in figure 5. Place q in this net enables the initial a, and then disables it unless
b has been fired j + 2 times. After the execution of block bbjb there are k − 1
tokens more than a needs to fire on place q. These surplus tokens allow a to be
fired after each sequence bjb, but not earlier. Place p has initially 1 token on it,
which is necessary to execute block bbjb after the first a, and this place has only
j+ 1 tokens after each next a, preventing b at states where a must occur. Place d

11



a b

p

d cbca

q1 + k · (j + 1) k

j + 1

N1 :

M


p
q
d
ca
cb

 =


1

1 + k · (j + 1)
0

k + 1
(j + 1)(k + 1)



a b

p

q

cbca
k + 1

j + 1

k + 1(k + 1) · (j + 2)− 1

: N2

M


p
q
ca
cb

 =


j + 2

0
k + 1

(k + 1)(j + 1)


Fig. 5. N1 solves the prefix abbj(babj)k. N2 solves the suffix bbj(babj)ka.

prevent premature occurence of b at the very beginning of the prefix, and places
ca and cb restrict the total number of firings of a and b respectively.

For the general form of maximal proper suffix bbj(babj)ka of w, one can consider
Petri net N2 on the right-hand side of figure 5 as a possible solution. Indeed,
place q prevents premature occurrences of a in the first block bbjb, and enables a
only after this and each next block bjb. Doing so, it collects one additional token
after each bjb, which allows this place to enable the very last a after sequence bj .
The initial marking allows to execute the sequence bbjb at the beginning, and at
most j + 1 b’s in a row after that, thanks to place p. Place cb restricts the total
number of b’s allowing only block bj at the end. Thus we deduce that any word
of the form abbj(babj)ka with j > 0 and k ≥ 1 is muw.

(b) w = babj(abbj)kb

We can similarly examine arbitrary (modulo swapping a/b) base extendable word
of another form w = babj(abbj)kb with j ≥ 0 and k ≥ 1. w satisfies (1) with
swapped a and b, α = bj , the star ∗ being repeated zero times, and the plus +

being repeated k times. Due to proposition 1, all binary words of this form are
unsolvable. Petri nets N1 and N2 in figure 6 are possible solutions for maximal
proper prefix and for maximal proper suffix of w, respectively.

Remark (On special structure of Petri nets which solve prefixes and suffixes):
Petri net N1 in figure 5, which solves maximal proper prefix abbj(babj)k of word
w = abbj(babj)ka from class BE , has a special structure. Place d serves for
preventing undesirable b in the very beginning of w, and places ca and cb restrict
the total number of a and b, correspondingly. So, the internal structure of the
word, being executed by N1, is determined by two places p and q, which prevent
when and only if the necessity b and a, respectively. In what follows, we will
call the part of N1 consisting of these two places (and transitions) a core part
. So, Petri net N2 if figure 5 has a core part made of places p and q. Similarly,
such parts are formed by places p and q for both nets in figure 6. In future

12



a b

p

d

ca cb

q

k + 1(j + 1) · (k + 1)− 1

j + 1

N1 :

M


p
q
d
ca
cb

 =


k + 1
j + 1

0
k + 1

(k + 1)(j + 1)



a b

p

ca cb

q

k + 1

2k + 1k · (j + 1) + 1

j + 1

: N2

M


p
q
ca
cb

 =


0

j + 2
k + 1

(k + 1)(j + 1)


Fig. 6. N1 solves the prefix babj(abbj)k. N2 solves the suffix abj(abbj)kb.

consideration we shall sometimes concentrate only on such core parts, as the
other necessary places may be added in an uncomplicated way and does not
influence the main behaviour of the nets.

CASE 2 (non-extendable words):

We now demonstrate that any (modulo swapping a/b) binary word of the form
w = abbjbkbabja with j ≥ 0 and k ≥ 1 from class NE is minimal unsolvable.
w satisfies (1) with α = bj , the star ∗ being repeated k times, and the plus + being
repeated only once. Due to proposition 1, w is unsolvable. To show minimality of
w, we provide Petri nets N1 and N2 (see figure 8) solving its maximal proper
prefix and maximal proper suffix, respectively. 6

Example 1. Let us consider a word w = abbbaba, which is of the form (1), with
α = b, the star ∗ being repeated zero times, and the plus + being repeated just
once. By definition 1, w is a base extendable word with j = 1 and k = 1. The
word w is unsolvable (by proposition 1) and minimal with that property. We
show the minimality by introducing Petri nets solving a proper prefix abbbab and
a proper suffix bbbaba of w. Those Petri nets, constructed on the basis of the
proof of lemma 6, are depicted in figure 7.

a b

p

d

cbca

q3

2

N1 :

a b

p

q

cbca 2

2

2

5

: N2

Fig. 7. N1 solves the prefix abbbab. N2 solves the suffix bbbaba.
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Notice that both Petri nets contain core parts consisting of places p and q, which
are responsible for the required behaviour of the nets, as well as auxiliary places
– a delay place d and counter places ca and cb.

a b

p

cbca

qj + k + 2

j + k + 2

N1 :

M


p
q
ca
cb

 =


0

j + k + 2
2

2 · (j + 1) + k



a b

p

cbca

q

j + 1

k + 2

j + k + 2

: N2

M


p
q
ca
cb

 =


j + k + 2

0
2

2 · (j + 1) + k



Fig. 8. N1 solves the prefix abbjbkbabj . N2 solves the suffix bbjbkbabja.

4.2 Extension operation and extendable words

Let us now explain how some minimal unsolvable words can be obtained from
other minimal unsolvable words. For this purpose we use the following notion of
extension operation:

Definition 3. Extension operation

For a word u = xwx (w ∈ {a, b}∗, x ∈ {a, b}) an extension operation E is defined
as follows:

E(awa) =
⋃∞
i=1

{
abMa,i(w)ai+1, aMb,i(wa)

}
,

E(bwb) =
⋃∞
i=1

{
baMb,i(w)bi+1, bMa,i(wb)

}
,

where Ma,i and Mb,i are morphisms defined as follows

Ma,i =

{
a 7→ ai+1b

b 7→ aib
and Mb,i =

{
a 7→ bia

b 7→ bi+1a
.

3

In what follows, for a given w ∈ {a, b}∗, we shall call u ∈ E(w) an extension of
w.

We are now ready to define a class of extendable minimal unsolvable words.
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Definition 4. Extendable words

For a word w ∈ {a, b, }∗

1. if w ∈ E(v) for some base extendable v, then w is extendable,
2. if w ∈ E(v) for some extendable v, then w is extendable,
3. there are no other extendable words.

The class of all extendable words is denoted by E . 4

Lemma 7. Unsolvability of extendable words

Let u ∈ {a, b}∗ be of the form abv(bav)ka or bav(abv)kb (k > 0). Then E(u) is a
set of PN-unsolvable words.

Proof: Let u = abv(bav)ka (k > 0). Then

E(u) =
⋃
i∈N

{
abaibM

(a)
i (v)

(
aibai+1bM

(a)
i (v)

)k
ai+1,

abi+1aM
(b)
i (v)

(
bi+1abiaM

(b)
i (v)

)k
bia
}

=

=
⋃
i∈N

{
ab(aibM

(a)
i (v)ai)

(
ba(aibM

(a)
i (v)ai)

)k
a,

ab(biaM
(b)
i (v)bi)

(
ba(biaM

(b)
i (v)bi)

)k
a
}

=

=
⋃
i∈N

{
abv

(a)
i

(
bav

(a)
i

)k
a, abv

(b)
i

(
bav

(a)
i

)k
a
}
.

Therefore, by proposition 1, E(u) is a set of PN-unsolvable words. The case
u = bav(abv)kb can be proved similarly. 7

a b
p

q

a+ b−

a− b+
Ñ1

M

(
p
q

)
=

(
b−

a−

)
; a b

p

q

a+ b−

a−0

a+0

b+
Ñ2

M

(
p
q

)
=

(
a+ + b−

0

)

Fig. 9. Core parts of Petri nets: Ñ1 for a net solving prefix, Ñ2 for a net solving
suffix.

Transformations of core part w.r.t. morphisms

As it has been demonstrated above, for every base extendable word w there are
Petri nets N1 and N2, which solve maximal proper prefix w1 and maximal proper
suffix w2 of w, respectively. These nets N1 and N2 have a special structure: so
called “core” parts Ñ1 and Ñ2 (general patterns of Ñ1 and Ñ2 are depicted in
figure 9) determine internal order of firings of a’s and b’s during execution of w1

and w2, while the remaining parts of N1 and N2 take responsibility of correct
implementation of the beginnings and the ends of w1 and w2. Applying operation
E to w, one can easily obtain new minimal unsolvable word w′. Moreover, applying
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appropriate transformation (which is determined by the particular morphism that

has been used to gain w′ from w) to Ñ1 or to Ñ2, one derives new core part Ñ ′1 or

Ñ ′2, which correctly implements the internal structure of maximal proper prefix
w′1 or maximal proper suffix w′2 of w′, respectively. In table 1 the correspondence
between morphisms from definition 3 and such transformations of nets is provided
for general forms of Ñ1 and Ñ2. This fact is confirmed throughout the proof of
the following lemma

Ma,i Mb,i

a+ 7−→ a+ + b− a+ 7−→ a+ + i · (a+ + b−)
b− 7−→ b− + i · (a+ + b−) b− 7−→ a+ + b−

b+ 7−→ b+ + i · (a− + b+) b+ 7−→ a− + b+

Ñ1 a
− 7−→ a− + b+ a− 7−→ a− + i · (a− + b+)
M(p) 7−→ b− + i · (a+ + b−) M(p) 7−→ a+ + b−

M(q) 7−→ a− + b+ M(q) 7−→ a− + i · (a− + b+)

a+ 7−→ a+ + b− a+ 7−→ a+ + i · (a+ + b−)
b− 7−→ b− + i · (a+ + b−) b− 7−→ a+ + b−

b+ 7−→ b+ + i · (a−0 + b+ − a+0 ) b+ 7−→ b+ + a−0 − a
+
0

Ñ2 a
−
0 7−→ a−0 + b+ a−0 7−→ a−0 + i · (b+ + a−0 − a

+
0 )

a+0 7−→ a+0 a+0 7−→ a+0
M(p) 7−→ b− + (i+ 1) · (a+ + b−) M(p) 7−→ a+ + (i+ 1) · (a+ + b−)
M(q) 7−→ 0 M(q) 7−→ 0

Table 1. Correspondence between morphisms and transformations

Lemma 8. Minimality of extendable words

If w ∈ E, then w is minimal unsolvable.

Proof: (Sketch) By lemma 7, any extendable word is unsolvable. According
to definition 4, for every w ∈ E there is a sequence w0, w1, . . . , wr such that
w0 ∈ BE , wj ∈ E and wj ∈ E(wj−1) for 1 ≤ j ≤ r, and wr = w. We will
argument by induction on r, and check the existence of Petri nets, solving
maximal proper prefix and suffix of w. Every base extendable word w0 is minimal
unsolvable, and there are Petri nets N0

1 and N0
2 with core parts and additional

parts, which solve the maximal proper prefix and suffix of w0. Suppose, for
1 ≤ j ≤ r−1, there are Petri nets N j

1 and N j
2 doing similar job for wj , and which

have been obtained from N j−1
1 and N j−1

2 , respectively, with the appropriate
transformation of core part. The particular morphism Mx,i with x ∈ {a, b}, that
has been used to derive wj from wj−1, determines this transformation uniquely.
Inductive step consists of proving that Nr

1 and Nr
2 obtained from Nr−1

1 and Nr−1
2 ,

respectively, solve maximal proper prefix and suffix of wr. Having morphism
Mx,i, the transformation and two core parts (new and old), it can be directly
checked that place p disables/enables transition b in prefix of wr−1 as a place of
(core part of) Nr−1

1 if one only if it does the same as the place of (core part of)
Nr

1 at the corresponding state in prefix of wr. Similarly, for place q and transition
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a, and also for suffixes of wr−1 and wr with nets Nr−1
2 and Nr

2 . Additional parts
of nets Nr

1 and Nr
2 can be implemented with a place “from initial to non-initial”

transition, having zero tokens initially and “enough many” tokens after, and a
place which is a simple counter for the (total) number of firings. 8

Let us note that the extension operation being applied to an extendable word,
produces another extendable word which is unsolvable and minimal. On the
other hand, from a non-extendable word this operation derives unsolvable but
not minimal words.

Example 2. Observe again the word w = abbbaba. From the previous considera-
tions (see example 1) we know that this words is base extendable, and therefore
is a muw. By the application of the extension operation, using the morphism

Ma,1 =

{
a 7→ aab

b 7→ ab
we obtain a word wa,1 = ab ababa ba ababa a, which is of the

form (1) with α = ababa, the star ∗ being repeated zero times, and the plus +

being repeated just once, hence – by proposition 1 – unsolvable. On the basis
of the Petri nets of figure 7, and according to table 1 we construct Petri nets
(depicted in figure 10) solving the maximal proper prefix ababababaababa and the
maximal proper suffix babababaababaa of wa,1. Thus, wa,1 is a minimal unsolvable
word.

a b

p

d

cbca

q

8 6

4 5

43

N1 :

a b

p

q

cbca
8 6

7

2

3 4

77

: N2

Fig. 10. N1 solves the prefix ababababaababa and N2 solves the suffix
babababaababaa of wa,1 = ababababaababaa.

Lemma 9. Unsolvability of extensions of non-extendable words

If w ∈ NE, then extension u ∈ E(w) is unsolvable but not minimal unsolvable.

Proof: Argumentation modulo swapping a/b. Consider arbitrary w ∈ NE , where
w = abbjbkbabja with j ≥ 0, k ≥ 1. Depending on a particular morphism Mx,i

with x = a or x = b for some i ≥ 1, extension ux ∈ E(w) of w = aw1a can be

ua = aMa,i(w1)ai+1 = a aib (aib)j (aib)k aib ai+1b (aib)j ai+1 =

= a (aib)k−1 ai−1 ab aib (aib)j ai︸ ︷︷ ︸
αa

| ba aib (aib)j ai︸ ︷︷ ︸
αa

a,

17



or

ub = aMb,i(w1a) = a bi+1a (bi+1a)j (bi+1a)k bi+1a bia (bi+1a)j bia =

= (abi+1)k ab bia (bi+1a)j bi︸ ︷︷ ︸
αb

| ba bia (bi+1a)j bi︸ ︷︷ ︸
αb

a

respectively. By proposition 1, word abαbbaαba is unsolvable, which means un-
solvability of ub. Due to k ≥ 1, abαbbaαba is a proper subword of ub. Hence,
ub is not minimal unsolvable. Analogously, unsolvability of abαabaαaa implies
non-minimal unsolvability of ua. 9

5 Generation-based classification of minimal unsolvable
words

Consider minimal unsolvable words w.r.t. the classification obtained earlier. All
possible patterns from (2)–(4), and more precisely their refined variants from
(2’)–(4’), can be distinguished into base extendable

ab(ba)k+1a, with k ≥ 0, for the second pattern from (4’),

abbx(babx)ka, with x > 0, k > 0, for the second pattern from (2’),

babx(abbx)kb, with x > 0, k > 0, for the first pattern from (3’),

non-extendable

abbx−1baa, with x > 2 for the first pattern from (4’),

abbxbk−1babxa, with x > 0, k > 2 for the first pattern from (2’),

and the rest, which we call C (compressible)

abx1abx2a . . . abxna, with x1 = x+ 1, xn = x, xi ∈ {x, x+ 1}, x > 0, n ≥ 3,

for the third pattern from (2’),

babx2abx3a . . . abxn , with x2 = x, xn = x+ 1, xi ∈ {x, x+ 1}, x > 0, n ≥ 3,

for the second pattern from (3’).

From this classification we derive that the class of all minimal unsolvable words
MUW = BE ∪NE ∪ C, where BE , NE and C are mutually disjoint classes. Note,
that since all words from class E are unsolvable and minimal with that property,
and E is disjoint with BE and NE , we have E ⊆ C.

5.1 Morphic compression and reducibility

In the previous section we showed how to construct new minimal unsolvable
words on the basis of extendable words. The purpose of this section is to introduce
an inverse transformation, which allows to compress longer minimal unsolvable
words into shorter ones.

18



Definition 5. Compression function

For a word v = xux (u ∈ {a, b}∗, x ∈ {a, b}) a compression function C is defined
as follows:

C(abuai+1) = aM−1a,i (u)a, C(baubi+1) = bM−1b,i (u)b,

C(auba) = aM−1b,i (uba), C(buab) = bM−1a,i (uab),
(6)

where i ≥ 1 and Ma,i, Mb,i are morphisms defined as follows:

M−1a,i :

{
ai+1b 7→ a

aib 7→ b
and M−1b,i :

{
bia 7→ a

bi+1a 7→ b. 5

It is easy to see that among all possible forms from the classification of minimal
unsolvable words, function C can only be applied to patterns from class C.
Moreover, the form of the word explicitly defines the particular morphism M−1x,i
which is used when applying C to the word. Let us also notice that since E ⊆ C,
all words from class E are compressible with function C.

From definitions 3 and 5 it is clear that Mx,i is reciprocal to M−1x,i for x ∈ {a, b},
i ≥ 1. The following lemma establishes that the extension operation E and
the application of compression function C are complement to each other in the
following sense

Lemma 10. Compression and extension functions

1. If v ∈ BE ∪ E and u ∈ E(v), then C(u) = v;
2. If u ∈ C and v = C(u), then u ∈ E(v).

Proof: 1. Let v = xv1x, where x ∈ {a, b}. Hence, for distinct x, y ∈ {a, b} and
i ≥ 1, we have two possible cases:

• u = xyMx,i(v1)xi+1. By compression function definition,
C(u) = C(xyMx,i(v1)xi+1) = aM−1x,i (Mx,i(v1))a = av1a = v.

• u = xMy,i(v1x). By compression function definition,
C(u) = C(xMy,i(v1x)) = C(xMy,i(v1)yix) = xM−1y,i (My,i(v1)yix) = xv1x = v.

2. W.l.o.g., u starts and ends with x ∈ {a, b}. Due to definition 5 of function C
and class C, u uniquely determines which compression morphism can be applied
to it. Two cases are possible:
• v = C(u) = xM−1x,i (u1)x for u = xyu1x

i+1, x 6= y ∈ {a, b}. Then,

E(v) =

∞⋃
j=1

{xyMx,j(M
−1
x,i (u1))xi+1, xMy,j(M

−1
x,i (u1)x)}.

As u = xyMx,j(M
−1
x,i (u1))xi+1 for j = i, hence u ∈ E(v).

• v = C(u) = xM−1y,i (u1xy
ix) for u = xu1xy

ix, x 6= y ∈ {a, b}. Then,

E(v) =

∞⋃
j=1

{xyMx,j(M
−1
y,i (u1x))xi+1, xMy,j(M

−1
y,i (u1xy

ix))}.

As u = xMy,j(M
−1
y,i (u1xy

ix)) for j = i, hence u ∈ E(v). 10

5.2 Compression of a muw is an unsolvable word

The following technical lemmata will be helpful in the further considerations.
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Lemma 11. Suppose w = α|sbm−1|s̃baβ, with m ≥ 1. If a is not separable at
state s, then it is not separable at state s̃, as well.

Proof: By contrapostion, assume there is a Petri net N = (P, T, F,M0) with a
place p ∈ P such that w can be fired completely, and Ms̃(p) < F (p, a). Since
a is enabled at the state right after s̃, b effectively brings tokes on p. Hence,
Ms(p) ≤Ms̃(p) < F (p, a), i.e. a is separable at state s with place p, contradiction.

11

Lemma 12. If w = abx1abx2a . . . abxna, with x1 = x+1, xn = x, xi ∈ {x, x+1},
x > 0, n ≥ 3, is a minimal unsolvable word, and separation failure occurs in
group bxk , then xk = x+ 1.

Lemma 13. If w = babx2abx3a . . . abxn , with x2 = x, xn = x+1, xi ∈ {x, x+1},
x > 0, n ≥ 3, is a minimal unsolvable word, and separation failure occurs after
group bxk , then xk = x.

Consider arbitrary minimal unsolvable word w = aw1 = abx1abx2a . . . abxna from
class C, with x1 = x + 1, xn = x, xi ∈ {x, x + 1}, x > 0, n ≥ 3. According to
the special form of w, compression function C can merely be applied to w in
form C(w = aw1) = aM−1b,x (w1). Note that u = C(w) is also unsolvable. Due to
lemma 12, for state s in

w = a bx1 a . . . a bxk−1︸ ︷︷ ︸
α

|s b a . . . a bxn︸ ︷︷ ︸
β

a,

from which a is not separated, we have xk = x+ 1. By lemma 1,

(n− k) · (x1 + x2 + · · ·+ xk − 1) ≥ k · (xk+1 + · · ·+ xn + 1)

Assume, there are l groups of bx in α (except the part of bxk), and m groups of
bx in β. Due to the form of w, we have 0 ≤ l < k − 1 and 0 < m ≤ n− k. Hence,

#a(β) ·#b(α) ≥ #a(α) ·#b(β) ⇐⇒
⇐⇒ (n− k) · (k · (x+ 1)− l − 1) ≥ k · ((n− k) · (x+ 1)−m+ 1) ⇐⇒
⇐⇒ k · l + k ·m− n · l − n ≥ 0.

After applying compression function to w, due to the definition of C and M−1b,x ,

for every sequence bxa and for every sequence bx+1a in w, we obtain a and b in
u, respectively. Hence, u has n+ 1 letters at all, starts with ab and ends with a
thanks to the definition of C and the shape of w, and, by lemma 12, has b on
(k + 1)-th position:

u = a b . . .︸ ︷︷ ︸
α′

|s′ b . . .︸︷︷︸
β′

a,
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where |α′| = k, |β′| = n− k. Moreover, #a(α
′) = l and #a(β

′) = m. Thus, we
have #a(β′) ·#b(α

′) = m · (k − l) and #a(α′) ·#b(β
′) = l · (n− k −m). Then,

#a(β′) ·#b(α
′)−#a(α′) ·#b(β

′) = k · l + k ·m− n · l ≥
≥ k · l + k ·m− n · l − n ≥ 0.

Due to lemma 1, this implies unsolvability of u.

Let now consider arbitrary minimal unsolvable word w = babx2abx3a . . . abxn

from class C, with x2 = x, xn = x+ 1, xi ∈ {x, x+ 1}, x > 0, n ≥ 3, and check
that u = C(w) is unsolvable as well. The form of w explicitly determines that
C(w = bw1b

x+1) = bM−1b,x (w1)b. By lemma 13, for state s from which b is not
separated in

w = b a bx2 a . . . bxk︸ ︷︷ ︸
α

|s a bxk+1 a . . . a bxn−1︸ ︷︷ ︸
β

b,

we have xk = x. From lemma 1,

(k − 1) · (xk+1 + . . .+ xn − 1) ≥ (1 + x2 + . . .+ xk) · (n− k).

Assume, there are l groups of bx+1 in α and m groups of bx+1 in β. Due to the
form of w, we have 0 ≤ l < k and 0 ≤ m ≤ n− k, and

(k − 1) · (x · (n− k) +m) ≥ (1 + x · (k − 1) + l) · (n− k) ⇐⇒
⇐⇒ k ·m−m− n+ k − l · n+ l · k ≥ 0.

After applying compression function C to w, according to the definition of M−1b,x ,

for every sequence bx+1a and every sequence bxa in w, we obtain a and b in u,
respectively. Hence, u has n letters at all, starts with ba and ends with b, by
definition of function C and special shape of w, and, by lemma 13, has a on k-th
position:

u = ba . . .︸ ︷︷ ︸
α′

|s′ a . . .︸︷︷︸
β′

b,

where |α′| = k − 1, |β′| = n − k. Moreover, #b(α
′) = l and #b(β

′) = m. Thus,
#a(α′) ·#b(β

′) = (k − 1− l) ·m and #b(α
′) ·#a(β′) = l · (n− k −m). Then,

#a(α′) ·#b(β
′)−#b(α

′) ·#a(β′) = k ·m−m− l · n+ l · k ≥
≥ k ·m−m− l · n+ l · k + k − n ≥ 0.

By lemma 1, this means u is unsolvable.

So far, we have shown that the compression of any word from C is unsolvable.
Suppose that C \ E 6= ∅. Take some shortest word u ∈ C \ E and let w = C(u).
Since w is unsolvable, two cases are possible:
Case 1: w is a minimal unsolvable word. Due to the choice of u as shortest in
C \ E , and the fact that w is shorter than u, we have w /∈ C \ E . Hence, w belongs
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to one of disjoint classes BE , NE , E . If w ∈ BE or w ∈ E , then, by definition 4 and
lemma 10, u ∈ E(w) ⊆ E , which contradicts the choice of u ∈ C \ E . If w ∈ NE ,
then by Lemma 9 u ∈ E(w) is not a minimal unsolvable word, contradicting
minimality of u.
Case 2: w is not a minimal unsolvable word. We shall prove that u is also not
a minimal unsolvable word. Assume now, w = w1vw2, where v is a minimal
unsolvable word and w1w2 6= ε, and that w has been obtained from u using
compression morphism M−1x,i , where x ∈ {a, b}. Since v is a proper subword of
w, and w is shorter than u, then v /∈ C \ E . From the minimal unsolvability of v
we have v ∈ BE ∪ E ∪ NE . Hence, any extension v′ of v is unsolvable (possibly
not minimal in case v ∈ NE). For x 6= y, where x, y ∈ {a, b}, we have either
v = xv1x, or v = yv1y. Consider these two possibilities.

1. v = xv1x. In this case, according to definition 3, we consider extension
v′ = xyMx,i(v1)xi+1 ∈ E(v). Suppose both w1 and w2 are non-empty words.
Hence, Mx,i(v) = xi+1yMx,i(v1)xi+1y is a proper subword of u. As v′ is
a subword of Mx,i(v), we get a contradiction to the minimal unsolvability
of u. Assume, w1 = ε. Then, being a proper prefix of w, after extension
v will be morphed to xyMx,i(v1)xi+1y, which again has v′ as a subword,
implying contradiction to the minimality of u. If w2 = ε, extension u of w
with morphism Mx,i has a proper subword xi+1yMx,i(v1)xi+1, and hence,
contains v′ as well. This contradicts minimal unsolvability of u.

2. v = yv1y. Let now v′ = yMx,i(v1y) ∈ E(v). In case w1 is non-empty word,
Mx,i(v) = xiyMx,i(v1y) is a proper subword of u, and contains v′ as a factor.
This contradicts minimality of u. If w1 = ε, u has v′ as a proper prefix, which
again contradicts minimal unsolvability of u.

Thus, C = E , which establishes the first of main results of the paper

Theorem 1. Generative nature of minimal unsolvable binary words

Let w be a minimal Petri net unsolvable binary word. Then we have the following
exclusive alternatives:

• w is a non-extendable word (w ∈ NE),
• w is a base extendable word (w ∈ BE),
• w is an extendable word (w ∈ E).

Generation of maximal partial solutions of minimal unsolvable words

In the last case of the alternative from theorem 1 (case w ∈ E), applying function
C to w consecutively, we can recover sequence of minimal unsolvable words
w0, w1, . . . , wr, such that w0 ∈ BE , wr = w, wi ∈ E and wi−1 = C(wi) for
1 ≤ i ≤ r. Moreover, starting from a word w0, its maximal proper prefix and
maximal proper suffix, and Petri nets solving them (in special forms, that have
been provided in the paper), using appropriate transformations, we can derive
Petri nets solving maximal proper prefix and maximal proper suffix of wi for all
1 ≤ i ≤ r.
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Example 3. Let us consider word v = ba aabaaabaa ab aabaaabaa b. It is unsolv-
able by proposition 1, because it is of the form baα a∗ (abα)+ b (which is exactly
the form (1) – modulo swapping a/b) with α = aabaaabaa, the star ∗ being
repeated zero times, and the plus + being repeated just once. We now aim to
compress v with function C. It can be easily seen that the word could be written
in the form

v = b(aaab)(aaab)(aaab)(aab)(aaab)(aab), hence we need to consider the mor-

phism M−1a,2 :

{
aaab 7→ a

aab 7→ b
, and by the compression we obtain a word v−1a,2 =

baaabab. Let us notice that v−1a,2 is dual to the word w = abbbaba (see example 1),
modulo swapping a/b, hence it is a minimal unsolvable word. Function C cannot
be applied to w = C(v), which accord with the fact that w ∈ BE .

Moreover, starting with the word w = abbbaba, together with Petri nets solving
its proper prefix and suffix (see figure 7) and applying the morphism Mb,2 :{
a 7→ bba

b 7→ bbba
we obtain the word wb,2 = ab bbabbbabb ba bbabbbabb a which is dual

to v modulo swapping a/b. By the previous considerations we can easily construct
Petri nets solving the maximal proper prefix and the maximal proper suffix of
wb,2, hence, by swapping letters we can obtain Petri nets for a proper prefix and
a proper suffix of v. Such nets are depicted in figure 11. Now we can state that
the word v is not only unsolvable, but also minimal with that property.

b a

p

d

cacb

q

6 16

11
11 4

38

N1 :

b a

p

q

cacb
6 16

11

2

8 3

515

: N2

Fig. 11. N1 solves the prefix baaabaaabaaabaabaaabaa and N2 solves the suffix
aaabaaabaaabaabaaabaab of v = baaabaaabaaabaabaaabaab .

6 Algorithm for checking unsolvability

The classification of minimal unsolvable words presented in sections 3 and 4
leads to an efficient algorithm for verifying solvability/unsolvability of a binary
word. By definition 2 all non-extendable words are of the form (Ia) abxabya or
(Ib) baxbayb, where x > y + 2, y ≥ 0, and by definition 1 and 3 all extendable
words (including base extendable ones) are of the form (IIa) abw(baw)ka or
(IIb) baw(abw)kb, where k ≥ 1 and w ∈ {a, b}∗.
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Recall that a word v ∈ {a, b}∗ containing a minimal unsolvable word as a factor is
also unsolvable. Moreover, due to theorem 1, v is unsolvable if it contains at least
one of the patterns (Ia) (Ib), (IIa) or (IIb). Therefore, checking the solvability of
a binary word can be reduced to a pattern-matching problem.

The algorithm described below takes a binary word v as an input and returns
true if v is solvable and false otherwise (i.e. any of the above mentioned patterns
was found inside v).

As the first step we search for the patterns (Ia) and (Ib). We scan the input
word from left to right comparing the sizes of the two blocks of consecutive b’s
between any three consecutive occurrences of a and the sizes of the two blocks of
consecutive a’s between any three consecutive occurrences of b. This can be done
in O(n) time and O(1) space.

The second step is to search for the patterns (IIa) and (IIb). It utilizes the
Knuth-Morris-Pratt failure function called also the border table (see [6]). For
any position i in v it contains the length of the longest factor u, which is at the
same time a proper prefix and a proper suffix of v[1..i]. Such a factor is called a
border of v[1..i]. For the relation between borders and periods of a word see for
instance [7].

The search for the patterns (IIa) and (IIb) is performed as follows. For any possible
pair of letters v[i..i+ 1] = ab (v[i..i+ 1] = ba respectively) we temporarily swap
v[i] with v[i+ 1] and then build the border table for the suffix of v starting at
position i. After discovering a repetition v[i..j] (i.e. difference between j and
the lenght of the border divides j − i) we check whether it is followed by a (b
respectively) and report the occurrence of the pattern if needed.

The border table for a single suffix of the input word v can be constructed in
O(n) time and O(n) space (see [6]). We have to process at most O(n) suffixes
of v, therefore the second step and the whole algorithm runs in O(n2) time and
O(n) space.

7 Conclusion

In this paper we studied the class of binary words which can not be generated
by any injectively-labelled Petri net, and which are minimal with that property.
We examined in detail all possible shapes of such words, obtaining extended
regular expressions for them. The presented classification of minimal unsolvable
words resulted in the construction of a pattern-matching based algorithm for
checking the solvability/unsolvability for binary words. Moreover, we introduced
the extension and compression functions, which could be foundations of a fixed-
point procedure for the generation of the set of all minimal unsolvable binary
words. The non-extendable and base extendable words are defined by simple
parametrized formulas (see definitions 2 and 1). Choosing all possible values of the
parameters j and k we can generate all non-extendable and base extendable words
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of a given length. Then by using recursive calls of extension and compression
function we can generate all extendable words of a given length.
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Appendix

Lemma 2. b is always separated in muw aα
If w is a minimal unsolvable word and starts with a, there is no violations of
essp for b in w.
Proof: By contraposition, assume w = a . . . |sa . . . a, and b is not separated
from state s. If there is no b in w before state s, b can be separated from s
with place p having zero tokens initially, the weight of the arc from a to p is
1, and p being a side-condition for b with both arc having weight equal to the
number of occurrences of a before the first b in w. Hence, there is at least one
b before s. If there is no b after state s, one can separate b from s with an
input place p for b, having #b(w) tokens initially, and the weight of the arc
from p to b equal to 1. Thus, there is at least one b after s in w. As b is not
separable at s, for some decomposition w = aαbβ|saγbδ, by lemma 1, we have
#b(bβ)·#a(aγ) ≤ #a(bβ)·#b(aγ). The inequality means that the proper subword
bβaγb of w is unsolvable, contradicting minimality of w.

Lemma 8. Minimality of extendable words
If w ∈ E, then w is minimal unsolvable.
Proof: Let w ∈ E be an arbitrary extendable word. By lemma 7, w is unsolvable.
Let now check its minimality. According to definition 4, there is a sequence
w0, w1, . . . , wr such that w0 ∈ BE , wj ∈ E and wj ∈ E(wj−1) for 1 ≤ j ≤ r, and
wr = w. We will argument by induction on the length r of this sequence. From
the previous consideration we know that the base extendable word w0 is minimal
unsolvable, and there are Petri nets N0

1 and N0
2 with core part and additional part,

which are solutions for the maximal proper prefix and the maximal proper suffix
of w0. Assume now, that for every 1 ≤ j ≤ r− 1, there are Petri nets N j

1 and N j
2

which are solutions for the maximal proper prefix and the maximal proper suffix
of wj , and which have been obtained from N j−1

1 and N j−1
2 , respectively, with the

appropriate transformation from table 1 (this transformation is uniquely defined
by the particular morphism Mx,i with x ∈ {a, b}, that has been used to derive wj
from wj−1). We now prove, that knowing morphism Mx,i with x ∈ {a, b}, which
is used for producing wr from wr−1, and using the corresponding transformation,
Petri nets Nr

1 and Nr
2 , which are derivatives of Nr−1

1 and Nr−1
2 , are indeed

solutions for the maximal proper prefix and the maximal proper suffix of wr.

Let us consider the case of producing Nr
1 from Nr−1

1 , when wr−1 = aw′a and

wr = aMb,i(w
′a), for some i ≥ 1. Having the core part Ñr−1

1 (see figure 12) of
the solution Nr−1

1 for aw′, with the transformations of the arcweights and the
new initial marking

a+ 7−→ a+ + i · (a+ + b−) b− 7−→ a+ + b−

a− 7−→ a− + i · (a− + b+) b+ 7−→ a− + b+

m

(
p
q

)
=

(
a+ + b−

a− + i · (a− + b+)

) (7)
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Ñr−1
1 : a b

p

q

a+ b−

a− b+

M

(
p
q

)
=

(
b−

a−

)
;

Fig. 12. Core part of Petri net Nr−1
1 solving maximal proper prefix of wr−1.

for morphism Mb,i we can construct the new core part Ñr
1 for aw′′, where

aw′′a = wr. Let now check, that the constructed core part implements the
internal part of aw′′. We shall show, place p prevents all undesirable b inside aw′′

and enables all b that are to occur, and the similar for place q and transition a.
Since we have used morphism Mb,i for extension operation, we have a special
form of extension wr = abx1abx2a . . . abxna ∈ E(wr−1), with xj ∈ {i, i + 1}.
By contraposition, assume p disables some b that must occur at state s in
aw′′ = abx1a . . . abxk−m |s bma . . ., where s is the leftmost state in aw′′ with this
property, and k ≥ 1. By (7), each firing of a brings a+ + i · (a+ + b−) tokens on
place p, and b consumes a+ + b− tokens on every its occurrence. Hence p can only
disable the last but one b in a group bi+1, i.e. xk = i+1 and m = 1. Assume, there
are l groups of bi+1 in abx1a . . . abxk−1 |s. By the initial assumption, marking of
p at state s is less than the weight of the arc from p to b, i.e.

Ms(p) = (a+ + b−) + k · (a++ i · (a+ + b−))−
−k · i · (a+ + b−)− l · (a+ + b−) < a+ + b− ⇐⇒

⇐⇒ (k − l) · a++(1− l) · b− < b−

On the other hand, the marking of place p in net Ñr−1
1 , before applying trans-

formation (7), at state s1 of wr−1 = a . . . |s1b . . . a, where the b right after s1
corresponds to the block bxka in wr, is Ms1(p) = b− + (k − l) · a+ − l · b−, since
every sequence bi+1a in wr corresponds to b in wr−1, and every sequence bia
corresponds to a. Hence, Ms1(p) < b−, which contradicts the assumption that

the net Ñr−1
1 solves the word aw′. Thus, place p after transformation (7), allows

all necessary occurrences of b. Notice here, that place p allows b to fire initially
also.

We now have to show, p disables b at all states where a has to occur, ex-
cept the initial one. Suppose a contrary, i.e. there is a state s in aw′′ =
abx1a . . . abxk |s a . . . abxn , with k ≥ 1, such that Ms(p) ≥ a+ + b−. W.l.o.g.
let s to be the leftmost (except the initial) state with that property. Assume
xk = i+ 1. Consider state s′ in abx1a . . . |s′ abxk |s a . . . abxna. Then

Ms(p) = Ms′(p) + a++ i · (a+ + b−)− (i+ 1) · (a+ + b−) ≥ a+ + b− ⇐⇒
⇐⇒ Ms′(p) ≥ b− + (a+ + b−).

The last inequality means that b is not separated at state s′. If k = 1, then, by
(7), Ms′(p) = M(p) = a+ + b−, which contradicts the last inequality. If k > 1,
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then we get a contradiction to the choice of s. Hence, xk = i. Let l be the number
of blocks bi+1 in abx1a . . . abxk |s. Then

Ms(p) = (a+ + b−) + k · (a+ + i · (a+ + b−))−
− k · i · (a+ + b−)− l · (a+ + b−) ≥ a+ + b− ⇐⇒

⇐⇒ (k − l) · a+ + (1− l) · b− ≥ b−.

Since wr has been obtained using morphism Mb,i, sequence bxka corresponds to
letter a in wr−1. Therefore, in wr−1 = a . . . |s1a . . ., where s1 fits the state right
before bxka in wr, we have b is not separated at state s1, which contradicts the
assumption that Ñr−1

1 solves aw′. Thus, in the net Ñr
1 that was derived from

Ñr−1
1 by (7), p disables b whenever and only if it is necessary inside aw′′.

For separating b at the initial marking, one can construct additional place p1,
having 0 tokens on it initially, and being a pure input place for transition b and
pure output place for transition a with unit arcweights. For restricting the total
number of occurrences of b, it is enough to construct place p2 with #b(w

r) tokens
on it initially, which is a pure input place for b with the arcweight equal to 1.

Let us now consider place q and transition a. First we will show that q allows a to
fire at each state where this is necessary. It is clear that initially q enables a. By
contraposition, assume there is a state s in aw′′ = abx1abx2a . . . abxk |s abxk+1a . . .,
with k ≥ 1, such that q disables a at s. Due to (7), each firing of b brings a−+ b+

tokens on q. Hence xk = i. Suppose there are l blocks bi+1 in abx1a . . . abxk |s.
Then, we have

Ms(q) = a− + i · (a− + b+)− k · (a− + i · (a− + b+))+

+ k · i · (a− + b+) + l · (a− + b+) < a− + i · (a− + b+) ⇐⇒
⇐⇒ a− + l · b+ − (k − l) · a− < a−

Due to the fact that aw′′a has been obtained from aw′a using morphism Mb,i,
block bxka corresponds to a right after the state s′ in wr−1 = a . . . |s1a . . .. The

last inequality means Ms1(q) < a− which contradicts the assumption that Ñr−1
1

solves the word aw′. Thus, place q after the transformation (7) allows each
mandatory firing of a.

We now demonstrate that q disables a at every place, where b has to occur. By
contraposition, suppose there is a state s in aw′′ = abx1a . . . abxk−m |s bma . . .,
with k,m > 0, at which a is enabled by place q. W.l.o.g. let s be the leftmost
state in aw′′ with that property. Due to the initial marking of q provided in (7),
k > 1. Hence, for state s and place q we have

Ms(q) = a− + i · (a− + b+)− k · (a− + i · (a− + b+))

+ (x1 + · · ·+ xk −m) · (a− + b+) ≥ a− + i · (a− + b+)

If xk−1 = i, then

Ms1(q) = a− + i · (a− + b+)− (k − 1) · (a− + i · (a− + b+))

+ (x1 + · · ·+ xk−1 −m) · (a− + b+) ≥ a− + i · (a− + b+) + a−
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implying that a is enabled by q at state s1 in aw′′ = abx1a . . . abxk−1−m |s1 bma . . .,
which contradicts the choice of s. Then, xk−1 = i + 1. This means, the block
bxka corresponds to letter b in aw′a, and state s in aw′′ corresponds to the state
s0 in aw′ = a . . . |s0 b . . .. On the other hand,

Ms(q) = a− + i · (a− + b+)− k · (a− + i · (a− + b+))

+ (x1 + · · ·+ xk −m) · (a− + b+) ≥ a− + i · (a− + b+) ⇐⇒
⇐⇒ a− − (k − l) · a− + l · b+ ≥ a− + (m− 1) · (a− + b+)

Since m ≥ 1, we have Ms0(q) ≥ a− in the net Ñr−1
1 , implying that a is enabled

at state s0. This contradicts the fact that Ñr−1
1 solves aw′. Thus, q disables a at

every state in aw′′ where b has to occur.

Redundant occurrence of b at the very beginning of aw′′, that is not handled by
p, can be easily restricted by place p1, having zero tokens initially, the arc weight
from a to p1 is i+ 1 and the arc weight from p1 to b is 1. The length of execution
performed by Ñr

1 can be simply restricted with letter-counting place, having no
inputs and a single output for each transition, and the initial number of tokens
equal to the length of aw′′. As the result, we have Petri net Nr

1 , solving exactly
aw′′, with a core and additional part.

The other three possible cases from table 1 can be checked analogously.

Lemma 10. Suppose w = abx1a . . . abxna is a minimal unsolvable word. If a is
not separated at some state s in . . . abxk−m|sbma . . ., then a is not separated at
state s̃ in . . . abxk−1|s̃ba . . . as well.
Proof: By lemma 1, for

w =

α′︷ ︸︸ ︷
a bx1 a . . . a bxk−m︸ ︷︷ ︸

α

|s bm−1 |s′
β′︷ ︸︸ ︷

b a . . . bxn︸ ︷︷ ︸
β

a

the following holds true

#a(β) ·#b(α) ≥ #a(α) ·#b(β) ⇐⇒ #b(α)

#a(α)
≥ #b(β)

#a(β)
,

where #a(α) 6= 0 and #a(β) 6= 0. Due to #b(α
′) ≥ #b(α), #b(β

′) ≤ #b(β), and
#a(α) = #a(α′), #a(β) = #a(β′), we have

#b(α
′)

#a(α′)
≥ #b(β

′)

#a(β′)
=⇒ #a(β′) ·#b(α

′) ≥ #a(α′) ·#b(β
′),

implying a is not separated at state s′, according to lemma 1.

Lemma 11. If w = abx1abx2a . . . abxna, with x1 = x+1, xn = x, xi ∈ {x, x+1},
x > 0, n ≥ 3, is a minimal unsolvable word, and separation failure occurs in
group bxk , then xk = x+ 1.
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Proof: By lemma 11, a is not separated at some state s in

w =

α′︷ ︸︸ ︷
a bx1 a . . . a bxk−1−1 |

β′︷ ︸︸ ︷
b a bxk−1︸ ︷︷ ︸

α

|s b a . . . a bxn−1 a bxn︸ ︷︷ ︸
β

a,

which implies, according to lemma 1, that

(x1 + . . .+ xk − 1) · (n− k) ≥ (1 + xk+1 + . . .+ xn) · k ⇐⇒
x1 + . . .+ xk − 1

k
=

#b(α)

#a(α)
≥ #b(β)

#a(β)
=

1 + xk+1 + . . .+ xn
n− k

,

where #a(α) 6= 0 and #a(β) 6= 0. Assume now, by contraposition, that xk = k.

Since for every 1 ≤ i ≤ 0 we have x ≤ xi ≤ x + 1, then #b(α
′)
/

#a(α′) ≥
#b(α)

/
#a(α), where #a(α

′) 6= 0 because w starts with a. From x1 = x + 1,

it follows k > 1. Due to xn = x = xk, #b(β
′)
/

#a(β′) = #b(β)
/

#a(β), where

#a(β′) 6= 0 since k > 1. Thus, #b(α
′)
/

#b(α
′) ≥ #b(β

′)
/

#a(β′), which implies,

by lemma 1, unsolvability of α′β′a, contradicting minimality of w.

Lemma 12. If w = babx2abx3a . . . abxn , with x2 = x, xn = x+1, xi ∈ {x, x+1},
x > 0, n ≥ 3, is a minimal unsolvable word, and separation failure occurs after
group bxk , then xk = x.
Proof: For state s in w, from which b is not separated,

w =

α′︷ ︸︸ ︷
b a bx2−1 b a . . . a bxk−1−1 |

β′︷ ︸︸ ︷
a bxk︸ ︷︷ ︸

α

|s a . . . a bxn−1−1 b a bxn−1︸ ︷︷ ︸
β

b

according to lemma 1, we have

(k − 1) · (xk+1 + . . .+ xn − 1) ≥ (1 + x2 + . . .+ xk) · (n− k) ⇐⇒
xk+1 + . . .+ xn − 1

n− k
=

#b(β)

#a(β)
≥ #b(α)

#a(α)
=

1 + x2 + . . .+ xk
k − 1

,

where #a(β) 6= 0 since β starts with a, and #a(α) 6= 0 because k > 1. By
contraposition, assume xk = k+1. Since for all 2 ≤ i ≤ n we have x ≤ xi ≤ x+1,
#b(α

′)
/

#a(α′) ≤ #b(α)
/

#a(α), where #a(α′) 6= 0 because k > 2. From xn =

x + 1 = xk it follows #b(β)
/

#a(β) = #b(β
′)
/

#a(β′), where #a(β
′) 6= 0 due

to β′ starts with a. Hence, #b(β
′)
/

#a(β′) ≥ #b(α
′)
/

#a(α′). Due to lemma 1,

this implies unsolvability of α′β′b, contradicting minimality of w.
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